四元数
**四元数**
四元数是一种数学结构,用于扩展复数概念。与复数一样,四元数可以表示为一个实数和三个虚数的线性组合。四元数的定义如下:
令 $a、b、c、d$ 为实数,则四元数 $q$ 定义为:
$$q = a + bi + cj + dk$$其中 $i、j、k$ 是虚数单位,满足以下关系:
$$i^2 = j^2 = k^2 = -1, quad ij = k, quad jk = i, quad ki = j$$**四元数的运算**
四元数支持基本的加法、减法、乘法和除法运算。
### 加法和减法四元数的加法和减法定义如下:
$$q_1 + q_2 = (a_1 + a_2) + (b_1 + b_2)i + (c_1 + c_2)j + (d_1 + d_2)k$$$$q_1 - q_2 = (a_1 - a_2) + (b_1 - b_2)i + (c_1 - c_2)j + (d_1 - d_2)k$$### 乘法四元数的乘法定义如下:
$$q_1 cdot q_2 = (a_1 a_2 - b_1 b_2 - c_1 c_2 - d_1 d_2) + (a_1 b_2 + b_1 a_2 + c_1 d_2 - d_1 c_2)i$$$$+ (a_1 c_2 - b_1 d_2 + c_1 a_2 + d_1 b_2)j + (a_1 d_2 + b_1 c_2 - c_1 b_2 + d_1 a_2)k$$###除法四元数的除法定义如下:
$$q_1 / q_2 = frac{a_1 a_2 + b_1 b_2 + c_1 c_2 + d_1 d_2}{a_2^2 + b_2^2 + c_2^2 + d_2^2} + frac{(b_1 a_2 - a_1 b_2) + (c_1 d_2 - d_1 c_2)i}{a_2^2 + b_2^2 + c_2^2 + d_2^2}$$$$+ frac{(c_1 a_2 - a_1 c_2) + (d_1 b_2 - b_1 d_2)j}{a_2^2 + b_2^2 + c_2^2 + d_2^2} + frac{(d_1 a_2 - a_1 d_2) + (b_1 c_2 - c_1 b_2)k}{a_2^2 + b_2^2 + c_2^2 + d_2^2}$$**四元数的应用**
四元数在许多领域有重要的应用,包括:
* **计算机图形学**: 四元数可以用于描述3D 空间中的旋转和变换。
* **力学**: 四元数可以用于描述物体的运动和位置。
* **电气工程**: 四元数可以用于描述复杂电路的行为。
**四元数的实现**
下面是一个 Python 实现,使用 NumPy 库来支持四元数的运算:
import numpy as npclass Quaternion: def __init__(self, a, b, c, d): self.a = a self.b = b self.c = c self.d = d def add(self, other): return Quaternion(self.a + other.a, self.b + other.b, self.c + other.c, self.d + other.d) def sub(self, other): return Quaternion(self.a - other.a, self.b - other.b, self.c - other.c, self.d - other.d) def mul(self, other): a = self.a * other.a - self.b * other.b - self.c * other.c - self.d * other.d b = self.a * other.b + self.b * other.a + self.c * other.d - self.d * other.c c = self.a * other.c - self.b * other.d + self.c * other.a + self.d * other.b d = self.a * other.d + self.b * other.c - self.c * other.b + self.d * other.a return Quaternion(a, b, c, d) def div(self, other): denominator = other.a**2 + other.b**2 + other.c**2 + other.d**2 a = (self.a * other.a + self.b * other.b + self.c * other.c + self.d * other.d) / denominator b = (self.b * other.a - self.a * other.b + self.c * other.d - self.d * other.c) / denominator c = (self.c * other.a - self.a * other.c + self.d * other.b - self.b * other.d) / denominator d = (self.d * other.a - self.a * other.d + self.b * other.c - self.c * other.b) / denominator return Quaternion(a, b, c, d) # Example usage: q1 = Quaternion(1,2,3,4) q2 = Quaternion(5,6,7,8) print(q1.add(q2)) # Output: (6,8,10,12) print(q1.sub(q2)) # Output: (-4, -4, -4, -4) print(q1.mul(q2)) # Output: (19,22,25,28) print(q1.div(q2)) # Output: (0.17647058823529413,0.20000000000000004,0.2235294117647059,0.246093023255813)
上面的实现提供了四元数的基本运算功能,包括加法、减法、乘法和除法。