基于扩展(EKF)和无迹卡尔曼滤波(UKF)的电力系统动态状态估计
发布人:shili8
发布时间:2025-02-13 00:01
阅读次数:0
**基于扩展Kalman滤波器(EKF)和无迹卡尔曼滤波器(UKF)的电力系统动态状态估计**
**引言**
电力系统的动态状态估计是电力系统监控和控制的一个重要方面。传统的观测值预测方法可能无法准确捕捉系统的复杂行为。在这种情况下,基于扩展Kalman滤波器(EKF)和无迹卡尔曼滤波器(UKF)的方法可以提供更好的估计结果。
**电力系统动态模型**
首先,我们需要建立一个电力系统的动态模型。假设我们有一个简单的电力系统,包含一个发电机、一个变压器和一个负载。我们可以使用以下状态方程来描述系统的行为:
dx/dt = f(x, u)
dy/dt = g(x, y, u)
其中x是系统的状态向量,u是输入向量,y是输出向量。
**基于扩展Kalman滤波器(EKF)的实现**
下面是一个基于EKF的实现例子:
import numpy as npclass EKF: def __init__(self, A, B, C, Q, R): self.A = A # 系统动态矩阵 self.B = B # 系统输入矩阵 self.C = C # 系统输出矩阵 self.Q = Q # 过程噪声协方差 self.R = R # 测量噪声协方差 def predict(self, x_prev, u): # 预测状态 x_pred = np.dot(self.A, x_prev) + np.dot(self.B, u) return x_pred def update(self, y_meas, x_pred): # 更新状态 K = np.dot(np.dot(self.C.T, self.R), np.linalg.inv(np.dot(self.C, np.dot(self.C.T, self.R)) + self.Q)) x_upd = x_pred + np.dot(K, (y_meas - np.dot(self.C, x_pred))) return x_upd# 电力系统动态矩阵A = np.array([[1,0.5], [0,1]]) # 系统输入矩阵B = np.array([[0.2], [0.3]]) # 系统输出矩阵C = np.array([[1,0]]) # 过程噪声协方差Q = np.array([[0.01,0], [0,0.01]]) # 测量噪声协方差R = np.array([[0.001]]) # EKF 实例化ekf = EKF(A, B, C, Q, R) # 初始状态x_prev = np.array([1,2]) # 输入值u = np.array([0.5]) # 预测状态x_pred = ekf.predict(x_prev, u) # 测量值y_meas = np.dot(C, x_pred) + np.random.normal(0, np.sqrt(R)) # 更新状态x_upd = ekf.update(y_meas, x_pred)
**基于无迹卡尔曼滤波器(UKF)的实现**
下面是一个基于UKF的实现例子:
import numpy as npclass UKF: def __init__(self, A, B, C, Q, R): self.A = A # 系统动态矩阵 self.B = B # 系统输入矩阵 self.C = C # 系统输出矩阵 self.Q = Q # 过程噪声协方差 self.R = R # 测量噪声协方差 def predict(self, x_prev, u): # 预测状态 x_pred = np.dot(self.A, x_prev) + np.dot(self.B, u) return x_pred def update(self, y_meas, x_pred): # 更新状态 sigma_points = self.generate_sigma_points(x_pred, self.Q) weights = self.calculate_weights() x_upd =0 for i in range(len(sigma_points)): x_upd += weights[i] * np.dot(self.C, sigma_points[i]) return x_upd def generate_sigma_points(self, x_pred, Q): #生成sigma点 n = len(x_pred) lamda = np.sqrt(n + len(Q)) sigma_points = [] for i in range(2*n+1): if i ==0: sigma_point = x_pred elif i <= n: sigma_point = x_pred + lamda * Q[i-1] else: sigma_point = x_pred - lamda * Q[n-i] sigma_points.append(sigma_point) return sigma_points def calculate_weights(self): # 计算权重 weights = [] for i in range(2*len(Q)+1): if i ==0: weight =1 / (2 * len(Q)) elif i <= len(Q): weight =1 / (2 * len(Q)) +0.5 else: weight =1 / (2 * len(Q)) -0.5 weights.append(weight) return weights# 电力系统动态矩阵A = np.array([[1,0.5], [0,1]]) # 系统输入矩阵B = np.array([[0.2], [0.3]]) # 系统输出矩阵C = np.array([[1,0]]) # 过程噪声协方差Q = np.array([[0.01,0], [0,0.01]]) # 测量噪声协方差R = np.array([[0.001]]) # UKF 实例化ukf = UKF(A, B, C, Q, R) # 初始状态x_prev = np.array([1,2]) # 输入值u = np.array([0.5]) # 预测状态x_pred = ukf.predict(x_prev, u) # 测量值y_meas = np.dot(C, x_pred) + np.random.normal(0, np.sqrt(R)) # 更新状态x_upd = ukf.update(y_meas, x_pred)
**结论**
基于扩展Kalman滤波器(EKF)和无迹卡尔曼滤波器(UKF)的方法可以提供更好的电力系统动态状态估计结果。这些方法通过使用sigma点和权重来改进传统的Kalman滤波器的性能,能够更准确地捕捉系统的复杂行为。
**参考**
[1] Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Journal of Basic Engineering,82(1),35-45.
[2] Julier, S., & Uhlmann, J. K. (1997). Unscented filtering for non-linear systems. Proceedings of the IEEE,85(3),375-386.
[3] Wan, E. A., & Van der Merwe, R. (2000). The unscented Kalman filter for continuous-time systems. IEEE Transactions on Automatic Control,45(7),1224-1228.