当前位置:实例文章 » JAVA Web实例» [文章]【Leetcode算法】Minimum Interval to Include Each Query 包含每个查询的最小区间

【Leetcode算法】Minimum Interval to Include Each Query 包含每个查询的最小区间

发布人:shili8 发布时间:2025-01-21 16:54 阅读次数:0

**Minimum Interval to Include Each Query**

在 LeetCode 上,有一个问题叫做 "Minimum Interval to Include Each Query"。这个问题要求我们找到包含每个查询的最小区间。

**问题描述**

给定一个整数数组 `nums` 和一个二维数组 `queries`,其中 `queries[i] = [lefti, righti]` 表示第 `i` 个查询的左边界和右边界。我们需要找到包含每个查询的最小区间。

**示例**

例如,如果 `nums = [1,2,3,4,5]` 和 `queries = [[1,3], [2,4]]`,那么结果应该是 `[1,3]` 和 `[2,4]`。

**解决方案**

我们可以使用一个二维数组 `dp` 来存储包含每个子区间的最小区间。其中 `dp[i][j]` 表示包含第 `i` 个子区间和第 `j` 个子区间的最小区间。

class Solution:
 def minInterval(self, nums: List[int], queries: List[List[int]]) -> List[List[int]]:
 n = len(nums)
 dp = [[(float('inf'), float('inf'))] * (n +1) for _ in range(n +1)]
 # 初始化dp数组 for i in range(n):
 dp[i][i] = (nums[i], nums[i])
 # 计算包含每个子区间的最小区间 for length in range(2, n +1):
 for left in range(n - length +1):
 right = left + length -1 dp[left][right] = (float('inf'), float('inf'))
 # 寻找包含当前子区间的最小区间 for i in range(left, right +1):
 if nums[i] < dp[left][right][0]:
 dp[left][right] = (nums[i], nums[right])
 # 计算包含每个查询的最小区间 result = []
 for left, right in queries:
 result.append(dp[left][right])
 return result


**代码注释**

* 我们首先初始化一个二维数组 `dp` 来存储包含每个子区间的最小区间。
* 然后,我们计算包含每个子区间的最小区间。我们从长度为2 的子区间开始,逐渐增加长度直到达到最大长度(即整个数组)。
* 在计算包含当前子区间的最小区间时,我们遍历所有可能的起始索引 `i`,并更新 `dp[left][right]` 以包含当前子区间和第 `i` 个子区间的最小区间。
* 最后,我们计算包含每个查询的最小区间,并将结果添加到 `result` 列表中。

**时间复杂度**

该算法的时间复杂度为 O(n^3),其中 n 是数组长度。我们需要计算包含每个子区间的最小区间,这需要 O(n^2) 的时间。然后,我们需要计算包含每个查询的最小区间,这也需要 O(n^2) 的时间。

**空间复杂度**

该算法的空间复杂度为 O(n^2),其中 n 是数组长度。我们需要存储包含每个子区间的最小区间,这需要 O(n^2) 的空间。

因此,包含每个查询的最小区间的解决方案是使用一个二维数组 `dp` 来存储包含每个子区间的最小区间,然后计算包含每个查询的最小区间。该算法的时间复杂度为 O(n^3),空间复杂度为 O(n^2)。

其他信息

其他资源

Top