【北大是如何考DFS的】【我们一起60天准备考研算法面试(大全)-第十六天 16/60】【DFS】
发布人:shili8
发布时间:2025-01-07 04:12
阅读次数:0
**北大是如何考DFS的**
在北大的计算机系考研算法面试中,深度优先搜索(Depth-First Search, DFS)是一个常见且重要的题目。下面我们将一起探讨北大是如何考DFS的,以及如何准备考研算法面试中的DFS题目。
**什么是DFS**
DFS是一种图论和树论中用于遍历图或树的算法。它通过递归地访问图或树中的每个节点来实现。DFS有两种基本类型:前序 DFS 和后序 DFS。
**北大考DFS的常见题目**
在北大的计算机系考研面试中,DFS通常会出现在以下几类题目中:
1. **查找路径**:给定两个图或树中的节点,要求找到从第一个节点到第二个节点的最短路径。
2. **检测环**:给定一个图或树,要求检测是否存在环路。
3. **寻找祖先**:给定一个图或树中的节点和一个目标值,要求找到该值在图或树中的所有祖先节点。
**如何准备考研算法面试中的DFS题目**
为了准备考研算法面试中的DFS题目,我们需要掌握以下几点:
1. **理解DFS的基本概念**:熟悉DFS的定义、前序 DFS 和后序 DFS 的区别,以及 DFS 的应用场景。
2. **掌握DFS的实现方法**:了解如何使用递归或迭代来实现 DFS,包括如何处理图或树中的边和节点。
3. **练习DFS题目**:通过大量的练习来熟悉 DFS 的各种应用场景和实现方法。
**DFS 的代码示例**
下面是几个 DFS 的代码示例:
### 前序 DFS
def preorder_dfs(graph, start): """ Perform a pre-order DFS on the graph starting from the given node. Args: graph (dict): The graph represented as an adjacency list. start (node): The node to start the DFS from. Returns: A list of nodes in the order they were visited. """ visited = set() result = [] def dfs(node): visited.add(node) result.append(node) for neighbor in graph[node]: if neighbor not in visited: dfs(neighbor) dfs(start) return result
### 后序 DFS
def postorder_dfs(graph, start): """ Perform a post-order DFS on the graph starting from the given node. Args: graph (dict): The graph represented as an adjacency list. start (node): The node to start the DFS from. Returns: A list of nodes in the order they were visited. """ visited = set() result = [] def dfs(node): visited.add(node) for neighbor in graph[node]: if neighbor not in visited: dfs(neighbor) result.append(node) dfs(start) return result
### 查找路径
def find_path(graph, start, end): """ Find the shortest path between two nodes in a graph. Args: graph (dict): The graph represented as an adjacency list. start (node): The starting node. end (node): The ending node. Returns: A list of nodes representing the shortest path from start to end. """ visited = set() queue = [(start, [start])] while queue: node, path = queue.pop(0) if node == end: return path for neighbor in graph[node]: if neighbor not in visited: queue.append((neighbor, path + [neighbor])) visited.add(neighbor) return None
### 检测环
def has_cycle(graph): """ Detect whether a graph contains a cycle. Args: graph (dict): The graph represented as an adjacency list. Returns: True if the graph contains a cycle, False otherwise. """ visited = set() recursion_stack = set() def dfs(node): visited.add(node) recursion_stack.add(node) for neighbor in graph[node]: if neighbor not in visited: if dfs(neighbor): return True elif neighbor in recursion_stack: return True recursion_stack.remove(node) return False for node in graph: if node not in visited and dfs(node): return True return False
### 寻找祖先
def find_ancestors(graph, target_value): """ Find all ancestors of a given value in a graph. Args: graph (dict): The graph represented as an adjacency list. target_value: The value to find ancestors for. Returns: A set of values representing the ancestors of the target value. """ visited = set() result = set() def dfs(node): visited.add(node) result.add(node) for neighbor in graph[node]: if neighbor not in visited and neighbor != target_value: dfs(neighbor) for node in graph: if node != target_value: dfs(node) return result
通过这些代码示例和注释,你应该能够更好地理解 DFS 的基本概念、实现方法以及如何应用于不同的场景。同时,也可以通过大量的练习来熟悉 DFS 的各种应用场景和实现方法,以便在考研面试中游刃自如。