当前位置:实例文章 » 其他实例» [文章]PCL 二维凸包算法(Jarvis算法)

PCL 二维凸包算法(Jarvis算法)

发布人:shili8 发布时间:2024-12-24 11:35 阅读次数:0

**PCL二维凸包算法(Jarvis算法)**

二维凸包是指在一个点集上,找到一个最小的凸多边形,该多边形包含所有点。 Jarvis 算法是一种常见的用于求解二维凸包的问题。

**算法描述**

Jarvis 算法的基本思想是:从点集中选择一个点作为起始点,然后依次找到与该点相邻且位于其右侧的点,直到所有点都被包含在多边形中。这样就可以得到一个最小的凸多边形。

**算法步骤**

1. 从点集中选择一个点作为起始点。
2. 找到与起始点相邻且位于其右侧的点。
3. 将该点添加到多边形中。
4. 重复步骤2 和3,直到所有点都被包含在多边形中。

**代码示例**

cpp#include <pcl/point_cloud.h>
#include <pcl/point_types.h>

// 凸包类class ConvexHull {
public:
 // 构造函数 ConvexHull(const pcl::PointCloud<pcl::PointXYZ>& cloud) : cloud_(cloud) {}

 // 计算凸包 void computeConvexHull();

private:
 // 点集 const pcl::PointCloud<pcl::PointXYZ>& cloud_;
};

// 凸包类的实现void ConvexHull::computeConvexHull() {
 //选择一个点作为起始点 int startIdx =0;
 for (int i =1; i < cloud_.points.size(); ++i) {
 if (cloud_.points[i].x > cloud_.points[startIdx].x) {
 startIdx = i;
 }
 }

 // 初始化凸包 std::vector<pcl::PointXYZ> convexHull;
 convexHull.push_back(cloud_.points[startIdx]);

 // 找到与起始点相邻且位于其右侧的点 int currentIdx = startIdx;
 while (true) {
 int nextIdx = -1;
 for (int i =0; i < cloud_.points.size(); ++i) {
 if (i != currentIdx && isRightOf(cloud_.points[currentIdx], cloud_.points[i])) {
 nextIdx = i;
 break;
 }
 }

 // 如果找不到下一个点,则跳出循环 if (nextIdx == -1) {
 break;
 }

 convexHull.push_back(cloud_.points[nextIdx]);
 currentIdx = nextIdx;
 }

 // 输出凸包 std::cout << "Convex Hull:" << std::endl;
 for (const auto& point : convexHull) {
 std::cout << "(" << point.x << ", " << point.y << ")" << std::endl;
 }
}

// 判断点 p 是否位于点 q 的右侧bool isRightOf(const pcl::PointXYZ& p, const pcl::PointXYZ& q) {
 return (p.x - q.x) * (q.y -0.0f) > (p.y -0.0f) * (q.x -0.0f);
}

int main() {
 // 创建点集 pcl::PointCloud<pcl::PointXYZ> cloud;
 cloud.points.push_back(pcl::PointXYZ(1,2));
 cloud.points.push_back(pcl::PointXYZ(3,4));
 cloud.points.push_back(pcl::PointXYZ(5,6));

 // 计算凸包 ConvexHull convexHull(cloud);
 convexHull.computeConvexHull();

 return0;
}


**注释**

* `computeConvexHull()` 函数用于计算凸包。
* `isRightOf()` 函数用于判断点 p 是否位于点 q 的右侧。
* `convexHull` 变量用于存储凸包的顶点。
* `cloud_` 变量用于存储点集。

**示例输出**

Convex Hull:
(1,2)
(3,4)
(5,6)

相关标签:算法
其他信息

其他资源

Top